天元术
所谓天元术,就是一种用数学符号列方程的方法,'立天元一为某某'相当于今'设x为某某'是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。例如李冶在东平(今山东省东平县)得到的讲天元术的算书中,还不懂得用统一符号表示未知数的不同次幂,它'以十九字识其上下层,曰仙、明、霄、汉、垒、层、高、上、天、人、地、下、低、减、落、逝、泉、暗、鬼。'这就是说,以'人'字表示常数,人以上九字表示未知数的各正数次幂(最高为九次),入以下九字表示未知数的各负数次幂(最低也是九次),其运算之繁可见一斑。从稍早于《测圆海镜》的《铃经》等书来看,天元术的作用还十分有限。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
《测圆海镜》
《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的'识别杂记'阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式),这部分内容是对中国古代关于勾股容圆问题的总结。后面各卷的习题,都可以在'识别杂记'的基础上以天元术为工具推导出来。李冶总结出一套简明实用的天元术程序,并给出化分式方程为整式方程的方法。他发明了负号和一套先进的小数记法,采用了从零到九的完整数码。除O以外的数码古已有之,是筹式的反映。但筹式中遇O空位,没有符号O。从现存古算书来看,李冶的《测圆海镜》和秦九韶《数书九章》是较早使用O的,它们成书的时间相差不过一年。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。
《测圆海镜》不仅是我国现存最早的一部天元术着作,而且在体例上也有创新。全书基本上是一个演绎体系,卷一包含了解题所需的定义、定理、公式,后面各卷问题的解法均可在此基础上以天元术为工具推导出来。李冶之前的算书,一般采取问题集的形式,各章(卷)内容大体上平列。李冶以演绎法着书,这是中国数学史上的一个进步。
《测圆海镜》的成书标志着天元术成熟,对后世有深远影响。元代王恂、郭守敬在编《授时历》的过程中,曾用天元术求周天弧度。不久,沙克什用天元术解决水利工程中的问题,收到良好效果。元代大数学家朱世杰说:'以天元演之、明源活法,省功数倍。'清代阮元说:'立天元者,自古算家之秘术;而海镜者,中土数学之宝书也。'
《益古演段》
《测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学着作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。李冶清楚地看到这一点,他坚信天元术是解决数学问题的一个有力工具,同时深刻认识到普及天元术的必要性。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,这使得他需要编写教学用书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。李冶大概认识到,天元术是从几何中产生的。因此,为了使人们理解天元术,就需回顾它与几何的关系,给代数以几何解释,而对二次方程进行几何解释是最方便的,于是便选择了以二次方程为主要内容的《益古集》(11世纪蒋周撰)。正如《四库全书·益古演段提要》所说:'此法(指天元术)虽为诸法之根,然神明变化,不可端倪,学者骤欲通之,茫无门径之可入。惟因方圆幂积以明之,其理尤届易见。'李冶是很乐于作这种普及工作的,他在序言中说:'使粗知十百者,便得入室啖其文,顾不快哉!'
《益古演段》全书64题,处理的主要是平面图形的面积问题,所求多为圆径、方边、周长之类。除四道题是一次方程外,全是二次方程问题,内容安排基本上是从易到难。李冶在完成《测圆海镜》之后写《益古演段》,他对天元术的运用自然会更加熟练。但他却没有像前者那样,完全用天元术解题。书中新旧二术并列,新术是李冶的代数方法——天元术;旧术是蒋周的几何方法——条段法,这是一种图解法,因为方程各项常用一段一段的条形面积表示,所以得名。该书揭示了两者的联系与区别,对我们了解条段法向天元术的过渡、探讨数学发展规律有重要意义。书中常用人们易懂的几何方法对天元术进行验证,这对于人们接受天元术是有好处的。该书图文并茂,深入浅出,不仅利于教学,也便于自学。正如砚坚序中的评价:'说之详,非若溟津黯淡之不可晓;析之明,非若浅近粗俗之无足观。'这些特点,使它成为一本受人们欢迎的数学教材,对天元术的传播发挥了不小的作用。
《益古演段》的价值不仅在于普及天元术,理论上也有创新首先,李冶善于用传统的出入相补原理及各种等量关系来减少题目中的未知数个数,化多元问题为一元问题。其次,李冶在解方程时采用了设辅助未知数的新方法,以简化运算:该书的问题同《测圆海镜》不同,所求量不是一个而是两个、三个甚至四个。按古代方程理论:'二物者再程,三物者三程,皆如物数程之。'应该用方程组来解,所含方程个数与所求量个数一致。但解二次方程组要比解一元方程困难得多。李冶既已完善了天元术程序,便力图提高它的一般化程度,用以解决各种多元问题。他的主要方法是利用出入相补原理(即'一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。'吴文俊语)及等量关系来减少未知数,化多元为一元,找到关键的天元一。一旦这个天元一求出来,其他要求的量就可根据与天元一的关系,很容易求出了。
方程理论新进展
李冶由于摆脱了几何思维束缚,在方程理论上取得了四项进展:
第一,他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。
第二,李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。
第三,李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。
第四,李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。
此外,李冶还发明了负号,他的负号与现在不同,是数字上画一条斜线。而在国外,德国人是在15世纪才引入负号的。李冶还发明了一套相当简明的小数记法,在李冶之前,小数记法离不开数名,如7.59875尺记作七尺五寸九分八厘七毫五丝。李冶则取消数名,完全用数码表示小数,纯小数在个位处写0,带小数于个位数下写步,如0.25记作○=|||||,这种记法在当时算是最先进的。直到17世纪,英国数学家J·纳普尔(1550—1617)发明小数点后,小数才有了更好的记法。
- 欢迎来到文学艺术网!