杨武之数论研究

博士论文:推进'棱锥数的华林问题'

中国的数论研究源远流长。孙子定理,中国剩余定理,秦九韶的不定方程理论,都是享誉世界的名篇。但到明清之际,数论研究已远远落后于欧洲,到本世纪20年代,能研究现代的数论而发表创造性论文的中国人,当以杨武之为第一人。

所谓华林问题,是指下列猜想:每个正整数都是4个平方数之和,9个立方数之和,一般地,g(k)个k次方数之和。1770年,J.-L.拉格朗日(Lagrange)证明了每个正整数确实是4个平方数之和,即g(2)=4。1909年,大数学家D.希尔伯特(Hilbert)证明:g(k)必是有限数。1928年,杨武之的导师狄克逊证得:g(3)=9。另外,S.W.贝尔(Baer)证明,凡大于23×1014的整数是8个立方数之和。于是狄克逊要杨武之考虑带系数的华林问题,即每个正整数f可否表示为f=rx3十C7,其中C7=x31十x32十…十x37,r=0,1,2,…,8.杨武之很快得到下述结果:

1.凡是大于14.1×4016的正整数都可表示为rx3十C7,其中r=5,7。

2.凡大于(30.1)×4196的正整数都可表示为3x3十C7。

3.凡大于23×1014的正整数都可表为8×c3十C7。

4.凡大于23×1014的奇正整数都可表示为rx3十C7,其中r=2,4,6。

5.凡大于23×1014的奇正整数的两倍,都可表为2x3十7。

杨武之的博士论文还讨论了带系数的7次方数的表示等问题。

杨武之最好的工作是关于棱锥数的华林问题。棱锥数p(n)=1/6(n3-n)是三角形数f(n)=n/2(n十1)的推广。1640年,费马(Fermat)猜测每个正整数都是不超过3个三角形数之和。后来证明这是对的。至于每个正整数能表示为几个棱锥数之和,也陆续有人研究。1896年,W.J.马耶(Maillet)首先得到,每个充分大的正整数是12个棱锥数之和。1928年,杨武之在博士论文里证明:

每个正整数都可写成9个棱锥数之和。此结果在20余年内没有改进,直至G.N.沃森(Watson)在1952年将'9个'减为'8个'。到1991年为止,这仍是已证明了的最好结果。

电子计算机出现之后,许多人曾作过实际验算,认为除241个例外数之外,小于106的正整数都是5个棱锥数之和。1991年,杨振宁和邓越凡等人的计算表明,凡小于109的正整数,除了17,27,…,343867等241个例外数之外,都是4个棱锥数之和。他们猜想,除这241个数之外,表示任何正整数,只要4个棱锥数就够了。

杨武之的这篇博士论文,首先在美国数学会的会议上作了介绍(1928年4月6日)。同年美国数学会通报第34卷,第412页上曾对此作了报道。以后全文发表于1931年的《清华理科报告》。

为您推荐

王见定研究方向

半解析函数 王见定教授对发展世界数学作出了大范围的原创性工作,1983年王见定教授在世界上首次提出半解析函数理论,1988年又首次提出并系统建立了共轭解析函数理论;并将这两项理论成功地应用于电场.磁场.流体力学.弹性..

王寿仁研究成果

非参数统计研究 王寿仁在概率统计方面的研究工作以及他对中国概率统计事业的贡献是多方面的。在50年代初、中期,国内这一学科的科研、教学人才还只是凤毛麟角,因此从事这项研究,不仅要克服更多的困难,还起着与国际动向接..

茱莉亚·克莉斯蒂娃学术研究

1969年克莉斯蒂娃出版了她的首本着作《Semeiotikè》(符号学)后,逐渐崛起于国际批评分析、文化理论与女性主义领域。她的着作涉猎广泛,其中传达了对互文性、符号学的见解,并横跨语言学、文学理论与评论、精神分析学、传记..

路德维希·维特根斯坦研究文献

路易·皮埃尔·阿尔都塞学术研究

在阿尔都塞的所有理论中,影响最大、争议最多的部分就是其着名的意识形态理论。这一理论集中体现在1965年发表的《马克思主义和人道主义》(见《保卫马克思》)和1970年在法共机关刊物《思想》杂志上发表的《意识形态和意..